

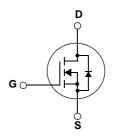
June 2008

FDI025N06

N-Channel PowerTrench[®] MOSFET 60V, 265A, 2.5m Ω

Features

- $R_{DS(on)} = 1.9 m\Omega$ (Typ.) @ $V_{GS} = 10 V$, $I_D = 75 A$
- · Fast switching speed
- · Low gate charge
- High performance trench technology for extremely low R_{DS(on)}
- · High power and current handling capability
- · RoHS compliant


General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

• DC to DC convertors / Synchronous Rectification

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol		Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage			60	V
V _{GSS}	Gate to Source Voltage			±20	V
	Dunin Comment	-Continuous (T _C = 25°C)		265*	Α
ID	Drain Current	-Continuous (T _C = 100°C)		190*	Α
I _{DM}	Drain Current	- Pulsed	(Note 1)	1060	Α
E _{AS}	Single Pulsed Avalanche E	nergy	(Note 2)	2531	mJ
dv/dt	Peak Diode Recovery dv/d	t	(Note 3)	3.5	V/ns
Б	D	$(T_C = 25^{\circ}C)$		395	W
Power Dissipation		- Derate above 25°C		2.6	W/°C
T _J , T _{STG}	Operating and Storage Ter	nperature Range		-55 to +175	°C
TL	Maximum Lead Temperatu	mum Lead Temperature for Soldering Purpose,			°C

^{*}Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.38	
$R_{\theta CS}$	Thermal Resistance, Case to Sink Typ.	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient 62.5		

Package Marking and Ordering Information $T_C = 25^{\circ}C$ unless otherwise noted

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDI025N06	FDI025N06	TO-262	-	-	50

Electrical Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_C = 25^{\circ} C$	60	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C	-	0.04	-	V/°C
1	Zero Gate Voltage Drain Current	$V_{DS} = 60V, V_{GS} = 0V$	-	-	1	
IDSS	Zeio Gate voltage Drain Current	$V_{DS} = 60V, V_{GS} = 0V, T_{C} = 150^{\circ}C$	-	-	500	μА
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 75A$	-	1.9	2.5	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_D = 75A$ (No	ote 4) -	200	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V 0V	-	11190	14885	pF
C _{oss}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V$ f = 1MHz		1610	2140	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	-	750	1125	pF
Q _{g(tot)}	Total Gate Charge at 10V		-	174	226	nC
Q_{gs}	Gate to Source Gate Charge	$V_{DS} = 48V, I_{D} = 75A$	-	54	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{GS} = 10V (Note 4, 5)	=	50	-	nC

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	134	278	ns
t _r	Turn-On Rise Time	$V_{DD} = 30V, I_{D} = 75A$	-	324	658	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 25\Omega$	-	348	706	ns
t _f	Turn-Off Fall Time	(Note		250	510	ns

Drain-Source Diode Characteristics

I_S	Maximum Continuous Drain to Source Diode Forward Current			-	-	265	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-	1060	Α
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{SD} = 75A$		-	-	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _{SD} = 75A		-	69	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	(Note 4)	-	152	-	nC

- Notes: 1: Repetitive Rating: Pulse width limited by maximum junction temperature 2: L = 0.9mH, $I_{AS} = 75A$, $V_{DD} = 50V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$ 3: $I_{SD} \le 75A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$ 4: Pulse Test: Pulse width $\le 300\mu s$, Duty Cycle $\le 2\%$ 5: Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics

Figure 1. On-Region Characteristics

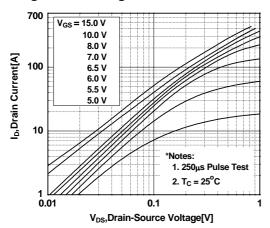


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

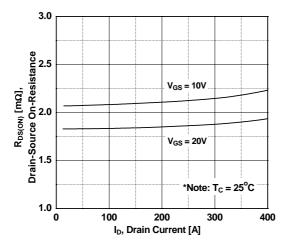


Figure 5. Capacitance Characteristics

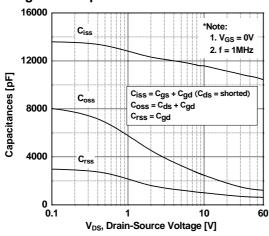


Figure 2. Transfer Characteristics

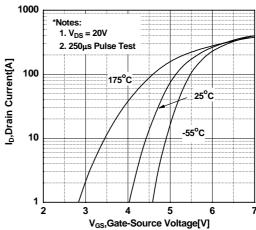


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

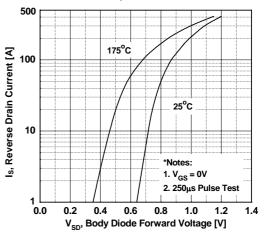
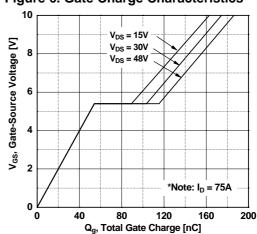



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

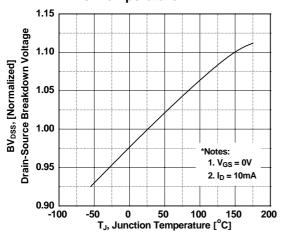


Figure 9. Maximum Safe Operating Area

1000

| Topics | 100 | 1

10

V_{DS}, Drain-Source Voltage [V]

0.1

Figure 8. On-Resistance Variation vs. Temperature

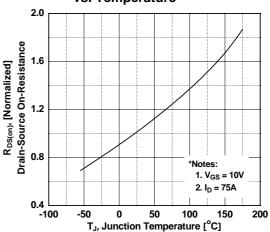


Figure 10. Maximum Drain Current vs. Case Temperature

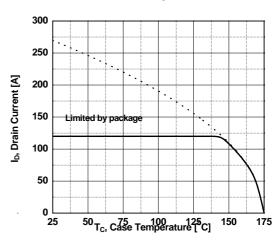
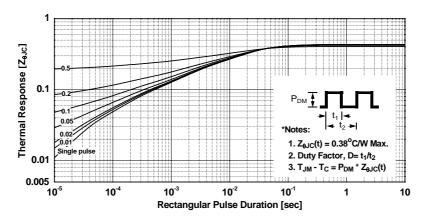
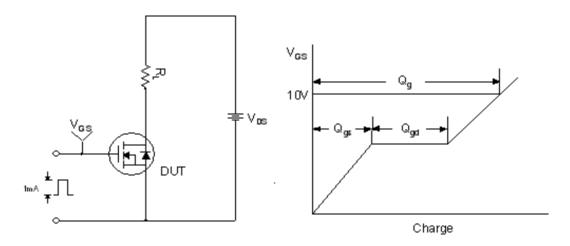
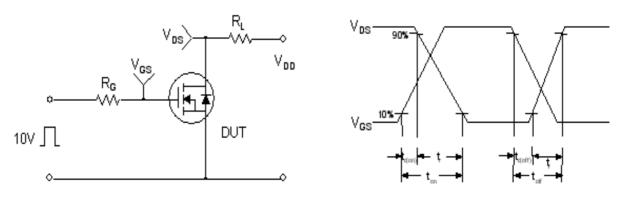
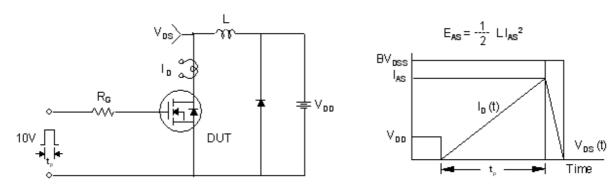
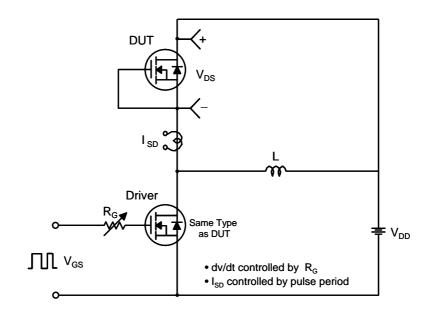




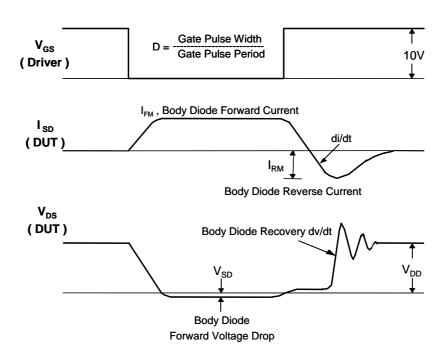
Figure 11. Transient Thermal Response Curve



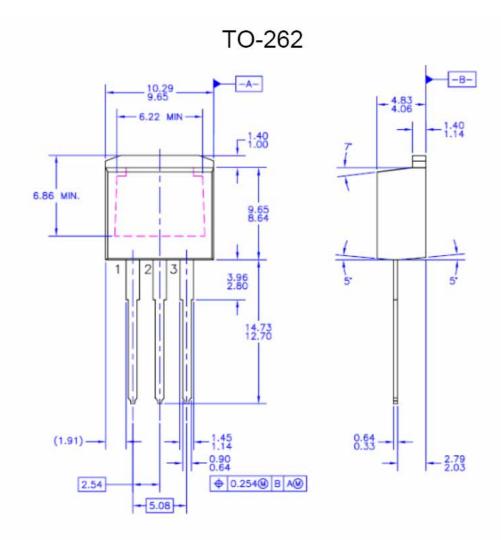
100


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Build it NowTM
CorePLUSTM
CorePOWERTM
CROSSVOLTTM
CTLTM
Current Transfer LogicTM
EcoSPARK®
EfficentMaxTM
EZSWITCHTM *

FACT®
FAST®
FastvCore™

F-PFSTM
FRFET®
Global Power ResourceSM
Green FPSTM
Green FPSTM e-SeriesTM
GTOTM
IntelliMAXTM
ISOPLANARTM
MegaBuckTM

FPSTM

ISOPLANARTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM
MillerDriveTM
MotionMaxTM
Motion-SPMTM
OPTOLOGIC®
OPTOPLANAR®

PDP-SPM™
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®

QS[™]
Quiet Series[™]
RapidConfigure[™]
Saving our world 1mW at a time[™]

SmartMax[™] SMART START[™]

SMART STARTING
SPM®
STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6
SuperSOTTM-8
SuperMOSTM

SYSTEM®

The Power Franchise®

pe wer
franchise
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™

UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™

* EZSWITCHTM and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter® *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34